nTOF (and other) measurements at Z: Assessing the impacts of flows, spatial variations, and Magnetic Fields

Patrick Knapp NISP Working Group LLNL, Livermore CA March 8, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

As always, many people contributed to this talk....

Matt Gomez¹, Chris Jennings¹, Stephanie Hansen¹, Kelly Hahn¹, Eric Harding¹, Paul Schmit¹, Brandon Lahmann⁶, Dean Rovang¹, Gordon Chandler¹, Steve Slutz¹, Adam Sefkow¹, Dan Sinars¹, Kyle Peterson¹, Mike Cuneo¹, Ryan McBride¹, Tom Awe¹, Matt Martin¹, Carlos Ruiz¹, Gary Cooper¹, Bill Stygar¹, Mark Savage¹, Mark Herrmann³, Gregory Rochau¹, John Porter¹, Ian Smith¹, Matthias Geisel¹, Patrick Rambo¹, Jens Schwarz¹, Brent Blue³, Kurt Tomlinson², Diana Schroen², Robert Stamm⁴, Ray Leeper⁵, Charlie Nakleh⁵

... And many many more

¹Sandia National Laboratories, Albuquerque, NM
²General Atomics, San Diego, CA
³Lawrence Livermore National Laboratory, Livermore, CA
⁴Raytheon Ktech, Albuquerque, NM
⁵Los Alamos National Laboratory, Los Alamos, NM
⁶ MIT, Cambridge Massachussettes

We are continually improving target performance and understanding of the MagLIF concept

- DD neutron yield scales with ion temperature as expected for a thermonuclear neutron production
- Measurement errors are large due primarily to uncertainties in scattering environment and instrument responses
- Nominally identical shots are reproducible within measurement uncertainties

We are continually improving target performance and understanding of the MagLIF concept

- DD neutron yield scales with ion temperature as expected for a thermonuclear neutron production
- Measurement errors are large due primarily to uncertainties in scattering environment and instrument responses
- Nominally identical shots are reproducible within measurement uncertainties

Normalizing the neutron yields to produce burn averaged reactivity shows a clear trend similar to theory

Broadening of neutron spectra due to residual kinetic energy is *expected* to be small

Sandia National Laboratories

Simulated Axially resolved, burn-

- The time integrated, line-of-sight velocity distribution of the neutron emitting plasma is ~Gaussian centered on 0 km/s with a FWHM of ~38km/s.
- There is fairly significant axial variation in this velocity distribution
 - Including bulk shifts varying with position (possibly resulting from helical structure)

We can model the effect of broadening on the resulting neutron spectra using MonteBurns*

- ution: $\kappa = 3.2$
- The residual velocity scale is small
- The burn averaged LOS-velocity distribution fits well to a Kappa distribution with κ=3.2 and v=27 km/s (quasi-Gaussian with extended tails)
- The line-averaged velocity is only 16 km/s

- Velocities of ions 1 and 2 are randomly drawn from a Maxwellian distribution
- The center of mass velocity is randomly chosen from the residual velocity distribution above

Using a Maxwellian plasma with $T_i=2.5$ keV we calculate the effect of this velocity distribution on the DD neutron spectrum

- Assume fluid velocity distribution is isotropic
- Both plots on the left are the same data (bottom is on a log scale)
- Using the nominal fitted distribution (v=27 km/s, κ=3.2), the spectrum is indistinguishable from the unbroadened spectrum
- The effect only becomes noticeable at v~100 km/s, even then it is small

Even though we likely do not have a true *stagnation*, the neutron measurements appear to be representative of a real "burn averaged" T_i

- Remember, the physics of our stagnation is different from that of hot-spot implosions
 - Due to preheat, the implosion is *subsonic* (v<100 km/s)
 - Stagnation is not impulsive (shock driven), the entire implosion is *adiabatic*
- This doesn't mean that residual velocity is *not* impacting performance, just that it is not likely impacting our interpretation

- Simulations performed by Chris Jennings using GORGON in 3D
- For this calculation neutron yield was 4.6e12 if 7.5mm tall target assumed. This calculation assumed 500J preheat energy. Simulation only modeled the central 4mm, neglecting end losses.
- Proportion of hot fuel at stagnation can be altered by changing the spot size assumed for the laser deposition (changing how much cold fuel is retained on liner wall).

This picture causes us to wonder about the neutron production in these "bright" regions

---9 keV (with Zn)

X-ray data provide crucial insights into these dynamics

Stagnation appears

to be fairly isobaric

 T_c and ρ are anti-

Bright spots in

spots in images

spectrum are well

correlated to bright

11

correlated

Details about stagnation from high-res, axially resolving XRS3* spectrometer

Sandia National Laboratories

Material provided by Stephanie Hansen and Eric Harding

A space resolved nTOF would require extremely high $\widehat{I}_{aboratories}^{Sandia}$ resolution (E/ Δ E~1000) to distinguish velocity shifts

- The bulk velocity shifts are ~ the thermal peak shift
- Situation is better for DT neutrons than DD
- Still extremely valuable for determining 1D variations in neutron emission and "temperature"

$$\delta v_n = v_n \left(\frac{v_f}{v_n} - \frac{1}{2} \left(\frac{v_f}{v_n} \right)^2 + \cdots \right)$$
$$\delta v_n \approx v_f$$

Neutron Downscatter from the compressed liner is observed in the data

- The important features of neutron downscatter from the liner are present in the data
- Due to high scattering environment, and low signal we can't be quantitative
- The downscatter model cannot match the data due to a scattering background
- A space-resolving nTOF could help understand the connection between primary neutron production and liner areal density
- At *much* higher yields, gated
 neutron images showing the spatial
 dependence of
 downscatter/backscatter could be
 extremely useful

Secondary DT neutron production is sensitive sensitive to fuel magnetization

²P.F. Schmit and P.F. Knapp et al., PRL 113, 155004 (2014)

- BR is the fundamental confinement parameter for MIF (supplanting ρ R)
- Secondary DT yield and spectra are sensitive to BR in a MagLIF-like stagnation plasma^{1,2}
- Effect arises from the change in 1 MeV triton path length when they transition from un-magnetized to magnetized

- TOF data can be used directly to estimate stagnation BR
 - Sensitive to determination of "center" of the spectrum
 - R_{hwhm} (or R_{fwhm}) is minimally sensitive to mix, fuel ρR , and T_e
- Forward method expands number of shots we can use
- Work ongoing to develop a forward fitting model

Sandia National Laboratories

Concluding Remarks

- Yield appears to be thermal
- Fluid motion seems unlikely to be a significant contributor to neutron spectral shape
 - May still be a significant contributor to energy balance
- There is significant axial variation in neutron emission and liner areal density inferred from simulation
 - There is significant variation in x-ray emission data
 - Space resolving nTOF could be an extremely valuable complement to x-ray diagnostics
- Need to understand scattering environment in order to utilize the Be downscatter measurement
- Magnetic field measurement is promising and exciting, but needs higher S/N